Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chen-Xia Yu, ${ }^{\text {a }}$ Da-Qing Shi, ${ }^{\text {a, }{ }^{\text {b }} \text { * }}$ Xiang-Shan Wang ${ }^{\text {a,b }}$ and Qi-Ya Zhuang ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, and ${ }^{\mathbf{b}}$ The Key Laboratory of Biotechnology for Medical Plants of Jiangsu Province, Xuzhou 221116, People's Republic of China

Correspondence e-mail: dqshi@263.net

Key indicators

Single-crystal X-ray study
$T=297 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.092$
Data-to-parameter ratio $=13.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-Amino-6-methoxy-4-(4-methoxyphenyl)-9,10-dihydro-4H-benzo[f]chromene-3-carbonitrile

The title compound, $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$, was synthesized by the reaction of 4-methoxybenzaldehyde, 7-methoxy-2-tetralone and malononitrile in the presence of triethylbenzylammonium chloride in an aqueous medium. X-ray analysis reveals that the pyran ring and the fused six-membered ring adopt boat and skew-boat conformations, respectively.

Comment

4 H -Chromene is a building block of some natural products. 4 H -Chromenes with amino and cyano groups are also the synthons of some special natural products (Hatokeyama et al., 1998; O'Callaghan \& McMurry, 1995). We have recently reported the synthesis of some $4 H$-chromene derivatives (Shi et al., 2002; Zhuang et al., 2002; Wang et al., 2004). As part of our programme aimed at developing new and environmentally friendly methodologies for the preparation of fine chemicals (Shi et al., 2003), we have synthesized the title compound, (I), in an aqueous medium and present its crystal structure here.

(I)

A molecular view of (I) is shown in Fig. 1. The bond lengths and angles have the usual values found for related molecules in the Cambridge Structural Database (CSD; Version 5.24; Allen, 2002).

Although nearly planar, the pyran ring can be regarded as having a boat conformation: atoms $\mathrm{C} 1, \mathrm{C} 10, \mathrm{C} 12$ and C 13 are coplanar, while atoms O 1 and C 11 deviate from the plane by 0.111 (2) and 0.239 (3) A, respectively. A similar conformation was observed in the structure of 2-amino-4-(2-chlorophenyl)-3-ethoxycarbonyl-4H-benzo[f]chromene (Zhuang et al., 2003).

The fused six-membered ring ($\mathrm{C} 1-\mathrm{C} 4 / \mathrm{C} 9 / \mathrm{C} 10$) adopts a skew-boat conformation: atoms $\mathrm{C} 2, \mathrm{C} 1, \mathrm{C} 10$ and C 9 are coplanar, while atoms C 3 and C 4 deviate from the plane by 0.701 (2) and 0.254 (3) A, respectively.

The dihedral angle between the two p-methoxyphenyl rings is $90.9(2)^{\circ}$. In addition, because of the existence of a conju-

Received 14 September 2004 Accepted 27 September 2004 Online 9 October 2004

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are shown as small spheres of arbitrary radii.
gated system, the $\mathrm{C} 13-\mathrm{N} 1$ bond length of $1.336(2) \AA$ is shorter than the typical Csp ${ }^{2}-\mathrm{N}$ bond distance (Lorente et al., 1995). The sum of the bond angles around $\mathrm{N} 1\left(359.8^{\circ}\right)$ indicates a planar geometry.

Intermolecular hydrogen bonds are formed between the amino group and both atom O3 of the carbonyl group and atom N 2 of the cyano group of symmetry-related molecules (Table 1), forming chains which extend parallel to a (Fig. 2).

Experimental

The title compound was prepared by the reaction of 4-methoxybenzaldehyde $(0.27 \mathrm{~g}, 2 \mathrm{mmol})$, 7-methoxy-2-tetralone $(0.35 \mathrm{~g}$, 2 mmol) and malononitrile ($0.13 \mathrm{~g}, 2 \mathrm{mmol}$) in the presence of triethylbenzylammonium chloride (0.2 g) in water (10 ml) at 298 K for 25 h . Yield 83%, m.p. $464-466 \mathrm{~K}$. Analysis: IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 3407, $3315\left(\mathrm{NH}_{2}\right), 2190(\mathrm{CN}), 1643,1603,1503,1455,840,769$ (phenyl ring); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \delta$, p.p.m.): 2.56-2.63 ($2 \mathrm{H}, m, \mathrm{CH}_{2}$), 2.85-2.96 $\left(2 \mathrm{H}, m, \mathrm{CH}_{2}\right), 3.63\left(3 \mathrm{H}, s, \mathrm{CH}_{3} \mathrm{O}\right), 3.76\left(3 \mathrm{H}, s, \mathrm{CH}_{3} \mathrm{O}\right), 4.39(2 \mathrm{H}, s$, $\left.\mathrm{NH}_{2}\right), 4.47(1 \mathrm{H}, s, \mathrm{CH}), 6.55-6.58(2 \mathrm{H}, m, \mathrm{ArH}), 6.82(2 \mathrm{H}, d, J=$ $8.4 \mathrm{~Hz}, \mathrm{ArH}), 6.98(1 \mathrm{H}, d, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.21-7.27(2 \mathrm{H}, m, \mathrm{ArH})$. Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=360.40$
Monoclinic, $P 2_{1} / c$
$a=10.267(2) \AA$
$b=7.011(1) \AA$
$c=26.352(3) \AA$
$\beta=93.94(1){ }^{\circ}{ }^{\circ}$
$V=1892.4(5) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.265 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 38 \\
& \text { reflections } \\
& \theta=3.0-13.4^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=297(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.50 \times 0.36 \times 0.32 \mathrm{~mm}
\end{aligned}
$$

Figure 2
A view of the molecular packing for (I), with the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonding interactions indicated by dotted lines. H atoms not involved in hydrogen bonding have been omitted.

Data collection

Siemens $P 4$ diffractometer

$$
\theta_{\max }=25.3^{\circ}
$$

ω scans

Absorption correction: none 4089 measured reflections
3424 independent reflections
1982 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.012$

$$
h=0 \rightarrow 12
$$

$k=0 \rightarrow 8$
$l=-31 \rightarrow 31$
3 standard reflections every 97 reflections intensity decay: 6.7%

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.092$
$S=0.85$
3424 reflections
255 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0443 P)^{2}\right] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.13 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.12 \mathrm{e}^{-3}
\end{gathered}
$$

Extinction correction: SHELXTL
(Sheldrick, 1997)
Extinction coefficient: 0.0110 (9)

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{i}}$	$0.861(9)$	$2.199(11)$	$3.038(2)$	$164.8(19)$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 2^{\mathrm{ii}}$	$0.873(9)$	$2.174(10)$	$3.034(2)$	$168.4(18)$

Symmetry codes: (i) $1+x, y, z$; (ii) $1-x,-y, 1-z$.
Amino H atoms $\mathrm{H} 1 A$ and $\mathrm{H} 1 B$ were refined isotropically. The positions of the other H atoms were calculated and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s)

organic papers

used to solve structure: $S H E L X T L$; program(s) used to refine structure: SHELXTL; molecular graphics: ORTEPIII (Burnett \& Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: SHELXTL.

The authors thank the Foundation of the 'Surpassing Project' of Jiangsu Province and the Foundation of the Key Laboratory of Biotechnology for Medical Plants of Jiangsu Province for financial support.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hatokeyama, S., Ochi, N., Numata, H. \& Takano, S. (1998). J. Chem. Soc. Chem. Commun. pp. 1202-1204.
Lorente, A., Galan, C., Fonseca, I. \& Sanz-Aparicio, J. (1995). Can. J. Chem. 73, 1546-1555.
O'Callaghan, C. N. \& McMurry, T. B. H. (1995). J. Chem. Res.(S), p. 214-215. Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Shi, D. Q., Chen, J., Zhuang, Q. Y. \& Hu, H. W. (2003). J. Chem. Res. (S). pp. 674-675.
Shi, D. Q., Wang, X. S. \& Tu, S. J. (2002). Chin. J. Org. Chem. 22, 1053-1056. Siemens (1994). XSCANS. Version 2.10. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA
Wang, J., Shi, D. Q. \& Wang, X. S. (2004). Acta Cryst. E60, o1401-o1402.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
Zhuang, Q. Y., Shi, D. Q., Tu, S. J. \& Wang, X. S. (2002). Chin. J. Appl. Chem. 19, 1019-1020.
Zhuang, Q. Y., Shi, D. Q. \& Wang, X. S. (2003). Acta Cryst. E59, o1474-o1475.

[^0]: (C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

